Application of neurobiological pain mechanisms to an orthopaedic injury
Ruth Chimenti, DPT, PhD – Postdoctoral Fellow, University of Iowa, Department of Physical Therapy and Rehabilitation Science

Outline: 1) Review neurobiological pain mechanisms, 2) Application of pain mechanisms to an animal model, 3) Application of pain mechanisms to a human model, 4) Open discussion

1) Pain mechanisms
 - **Nociceptive neuron:** A central (i.e. nociceptive pathway) or peripheral (i.e. nociceptor) neuron of the somatosensory nervous system that is capable of encoding noxious stimuli – IASP

 Pain definitions: http://www.iasp-pain.org/Taxonomy
 - **Nociceptive pain:** Pain that arises from actual or threatened damage to non-neural tissue and is due to the activation of nociceptors

Injury and Nociceptors
 - Peripheral nociceptors send signal to CNS nociceptive pathway
 - CNS modulates signal to result in an output
 - Pain (cortex)
 - Alterations in motor output (motor reflex)
 - Alterations in autonomic function
 - Alterations in mood and affect
 - Activation of silent nociceptors
 - Sensitization to mechanical, thermal and chemical stimuli

Sensitization
 - Occurs after tissue injury and pain
 - Neurons become more excitable
 - Nociceptors fire more frequently, respond in exaggerated way to stimuli
 - Non-nociceptors (touch, proprioception) do not sensitize
 - Definition: Increased responsiveness of nociceptive neurons to their normal or subthreshold afferent input (IASP)

Peripheral vs. Central Sensitization
 - Definition: Increased responsiveness of nociceptive neurons in the [peripheral/central] nervous system to their normal or subthreshold afferent input (IASP)
 - Peripheral sensitization can be addressed through peripherally-direct treatments
 - Ex. Ice to reduce inflammation with bursitis
 - Central sensitization
 - May be addressed through peripherally-directed treatments if primarily driven by peripheral sensitization
 - Otherwise, treatments need to address factors perpetuating sensitization within the CNS

Definitions
 - **Acute pain**
 - Pain associated with tissue damage or occurs in response to tissue injury
 - Protective- it is there for a reason
 - **Chronic Pain**
 - Pain that outlasts normal tissue healing time (~3 months) or after noxious stimulus is no longer active
 - Otherwise, treatments need to address factors perpetuating sensitization within the CNS
Central sensitization
- Accepted component of many chronic pain conditions
- Commonly studied in basic science and clinical pain research
 - Methods to directly and indirectly assess central excitability in basic science research
 - Methods to indirectly assess central excitability in clinical research

Ex. Temporal Summation
- Increased pain to a repetitive stimuli
- Reflects excitability of central nervous system

Noxious ≠ Painful
- Noxious: Stimulus that is harmful or has the potential to harm; Activates nociceptors
- Pain: An unpleasant sensory and emotional experience associated with actual or potential tissue damage

Definitions
- Hyperalgesia
 - Increased pain to a noxious stimuli
- Primary hyperalgesia
 - Occurs at the site of tissue injury
 - Reflects changes in primary afferent activity
 - Mediated by changes in PNS
- Secondary hyperalgesia
 - Occurs in an area surrounding the injury
 - Reflects changes in central neurons
 - Mediated by changes in CNS
- Referred Pain
 - Pain outside the area of injury
 - Within the same dermatome or spinal segmental innervation
- Allodynia
 - Painful response to an innocuous stimuli

2) Unilateral Intramuscular Injection of Acidic Saline Produce a Bilateral, Long-Lasting Hyperalgesia

- Repeated unilateral acidic injections to gastrocnemius muscle in a rat model
- Hyperalgesia defined by a lower withdrawal threshold (bending force) to pressure of Von Frey Filaments
- Bilateral mechanical hyperalgesia in acidic-injection group compared to saline-injected control group
- Hyperalgesia dependent on sufficient noxious dose and proximity in time
 - pH 4.0 induced greatest hyperalgesia
 - Injection intervals of 2-5 days apart produced hyperalgesia

- Critical threshold and window where reinjury can induce persistent (~4 weeks in rat model) hyperalgesia
- Hyperalgesia not related to tissue damage
 - Histology of gastroc similar between acid and saline injection groups
- Hyperalgesia not maintained by continued input of peripheral nociceptors site of injury
 - Unilateral dorsal rhizotomy (cut dorsal roots of L4-S1) and lidocaine injection had no effect on contralateral mechanical hyperalgesia
• Evidence of central sensitization:
 – Contralateral decrease in withdrawal threshold
 – Elimination of sensory input from site of injury (lidocaine injection) and afferent input from L4-S1 (dorsal rhizotomy)
 – Follow-up paper: Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1. Pain, 2003.

• Clinical implications:
 – Biomedical model not always sufficient to treat pain
 • Treatment for chronic musculoskeletal disorders target peripheral pain sources
 • Yet chronic pain may be maintained with the central nervous system (sensitized nociceptive pathway)

Biopsychosocial Model
• Alternative to the Biomedical Model
• Takes patient and patient experiences into account
• Recognizes that pain is influenced by psychosocial factors

Psychosocial Factors
• Pain catastrophizing: Thoughts that magnify the threat of pain
 – Pain Catastrophizing Scale
 • 13-item, 5-point likert scale
 • Score ranges from 0 (low) to 52 (high)
 • Indicate to what degree have catastrophizing thoughts feelings during pain

• Kinesiophobia: Fear of movement-related injury
 – Tampa Scale of Kinesiophobia
 • 17-item, 4-point likert scale
 • Score ranges from 17 (low) to 68 (high)
 • Indicate level of agreement with statements indicating fear of movement

3) Application of neurobiological pain mechanisms to an orthopaedic injury
- Preliminary Analysis- Chimenti RL, Hall MM, Phisitkul P, Merriwether EN, Yack JH, Sluka KA

Ongoing Clinical Mechanistic Study
• Insertional Achilles tendinopathy
• Imaging often demonstrates tissue damage and radiographic abnormalities
• Conflicting evidence on correlation between tendon/bone pathology and pain

Motivation
• IAT does not respond well to conservative care (Nicholson, 2007; Kader, 2002), and then referred to other peripherally directed treatments
• Approximately 40% of IAT patients will continue to report residual pain more than 2 years after surgery (Maffulli, 2008; McGarvey 2002)
• Quickly emerging field of research supporting that central sensitization contributes to tendinopathy pain (Plinsinga, 2010; Tompra, 2015)

Hypothesis
• Pain mechanisms mediated by the CNS contribute to the persistence of IAT pain

Methods
• Case-control study: preliminary analysis of data on 9 participants with AT
Summary of Findings

- While preliminary findings need to be examined in a larger sample:
 - Some centrally mediated pain mechanisms (Pain catastrophizing, Kinesiophobia) were relieved by an anesthetic injection to the Achilles tendon insertion
 - Other centrally mediated pain mechanisms (PPT, CPM, Temporal summation) were unchanged by an intervention targeting the peripheral pain source

- Pain can limit participation in exercise
 - 6/9 often do not exercise because of pain

- Psychological factors can limit participation in exercise
 - Majority of participants have a slight to moderate degree of pain catastrophizing
 - Majority of participants have some kinesiophobia
 - 1/3 of sample had depression

Clinical implications

- Limitations: Small sample size, preliminary analysis, specific to chronic Achilles tendon pain, need to compare findings to healthy controls
- In this sample of patients with chronic Achilles tendinopathy:
 - Interventions targeting PNS may be effective at reducing pain catastrophizing and kinesiophobia
 - Need an intervention targeting both PNS and CNS

References

Acknowledgements

Thank you to **Professor Kathleen Sluka, PT, PhD** for sharing slides from Pain Course taught at the University of Iowa, Department of Physical Therapy and Rehabilitation Science